APPLICATION NOTE

4/ Create an /,-_:;'
Camera_t cam

{/ Registe
gamera.Regif
LOwnership

Interfacing Basler Cameras with ROS 2

Applicable to Basler camera(s) that allow images to be displayed
by the Basler pylon Viewer only

Document Number: AW001729
Version: 01 Language: 000 (English)
Release Date: 15 May 2022

BASLER’

the power of sight

Contacting Basler Support Worldwide

Europe, Middle East, Africa

Basler AG

An der Strusbek 60—62
22926 Ahrensburg
Germany

Tel. +49 4102 463 515
Fax +49 4102 463 599

support.europe@baslerweb.com

The Americas

Basler, Inc.

855 Springdale Drive, Suite 203
Exton, PA 19341

USA

Tel. +1 610 280 0171
Fax +1 610 280 7608

support.usa@baslerweb.com

Asia-Pacific

Basler Asia Pte. Ltd.

35 Marsiling Industrial Estate Road 3
#05-06

Singapore 739257

Tel. +65 6367 1355
Fax +65 6367 1255

support.asia@baslerweb.com

www.baslerweb.com

All material in this publication is subject to change without notice and is copyright
Basler AG.

http://www.baslerweb.com/

AW00172901000

Basler Application Note

Table of Contents

1 General INformation....... ... e e e 2
2 INSAllatioN..... . 3
2.1 Operating System Compatibilitiesccoooe oo, 3

2.2 Installing the Basler pylon Camera Software Suite for Linux x86_64 3

2.3 Installing the ROS 2 Robot Operating SysStemuvvviiiiiiiiieiiiiiiiiiieiiiiiieieeeeeennns 4
2.31 Environment SettiNgscoooeei i 7

2.3.2 TaTiiE= 1[4 g Tl o T=To [T o SRR 8

233 Installing the Build TOOIScoooiiiiiii e 9

2.34 TaTSy =111 TaTo T 1o o[- 10

2.4 Installing the Middlewaret 11
241 Details About the pylon-ros2-camera driver packagecccccccunnnne. 11

24.2 Preparing a ROS 2 Build Workspace..........cccccvveeeiiiiciiiieeeee e 11

24.3 The Driver Employmentooooviviiiiiiiiiieeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 12

244 Running the Driver Packageccccciiiiiiiiiiiiie e 14

3 Controlling the Cameraccciriiiiiiriir 17
4 Driver AdJUSEMENt.........coooiiiii i ———— 20

Interfacing Basler Cameras with ROS 2 1

AW00172901000 Basler Application Note

1 General Information

This application note describes how to interface Basler Gige and USB3 Vision cameras with
ROS 2 using the pylon-ros2-camera driver package (expressed in code as pylon_ros2_camera).

Sensors and cameras are commonly used in robotics. The sensors are single-information and
array detectors while cameras provide visual control. To interface cameras for robotics the Robot
Operating System (ROS) user community continues to create camera driver wrappers and
processing nodes.

ROS is an all open-source framework of software libraries and tools. The framework supports the
building of various robot applications. ROS provides the developing tools, algorithms and drivers
for a variety of robotics platform projects.

ROS can run a large number of executables (nodes) in parallel and allows them to exchange data
synchronously (service) or asynchronously (subscribed/published topics). In practice, the data are
generally sensor queries whose result data are processed to cause robot actions.

Since ROS was started, a lot has changed in the robotics and ROS community. The aim of the
latest ROS 2 project is to adapt to these changes, leveraging what is positive about ROS and
improving what isn’t yet.

The procedures described in this document were evaluated with Basler pylon
v. 6.3 installed and with the following Linux distribution and ROS software:

0 Ubuntu 20.04.4 LTS (Focal Fossa) 64-bit
ROS 2 (Galactic Geochalone)

Check pylon version compatibilities when creating or using further ROS 2 nodes.

This document shows command examples after the $ prompt. You can use them
via copy-and-paste.

Legal Notice

Basler does not assume any liability for the functionality and suitability of any recommended open-
source products referenced in this application note. This is just a presentation of a sample use
case. The readers of this application note are fully responsible to conduct their own testing
procedures to assess the suitability of the mentioned open-source products for their own
applications.

The procedures described in this document assume that you are using the following hardware
components and software:

Linux x86_64 operating system
A Basler 2D GigE or USB 3.0 camera

Interfacing Basler Cameras with ROS 2 2

http://releases.ubuntu.com/xenial/
https://www.ros.org/

AW00172901000 Basler Application Note

pylon Viewer version 6.2 or newer
pylon-ros2-camera driver package
ROS 2 Robot Operating System

2 Installation

The installation section describes how to install the following software:
Operating system
Basler pylon Camera Software Suite for Linux x86_64
ROS 2 Robot Operating System
pylon-ros2-camera driver package

2.1 Operating System Compatibilities

This document focuses on the ROS 2 use with natively installed Linux x86_64 operating systems
and assumes that you use or create a new operating system installation using a Linux 1ISO image.
In the present case an Ubuntu 20.04.4 Long Term Support (LTS) x64 installation has been used.
Make sure that an internet connection on your Linux machine is available. In case of any
difficulties, check if any proxy server settings are necessary or must be adjusted. If the installations
take place behind a proxy server, at least proper HTTPS and FTP settings including port access
are mandatory.

Since ROS 2 is officially compatible with Windows 10 operating system, the pylon-ros2-camera
driver package may be as well. However, such constellations have never been tried, let alone
tested.

2.2 |Installing the Basler pylon Camera Software Suite for Linux x86_64

The pylon-ros2-camera driver package requires that the library of pylon version 6.2 or newer is
installed. At the moment, a manual installation is required especially with the latest version. The
following situations can apply:

pylon is already installed and path variable PYLON_ROOT is set properly

pylon is not yet installed but will be manually installed and enabled to be applicable for ROS 2
nodes

If you need to install a suitable pylon version, continue with the following steps. Otherwise,
continue with chapter 2.3 Installing the ROS 2 Robot Operating System further below.

To install pylon Viewer version 6.2 or higher:

1. Go to https://www.baslerweb.com/en/downloads/software-downloads/ where two pylon
Camera Software Suites for Linux x86_64 installer packages are available.

2. Download one of both packages, depending on applicability:

Interfacing Basler Cameras with ROS 2 3

https://github.com/basler/pylon-ros-camera/tree/galactic
https://www.baslerweb.com/en/downloads/software-downloads/

AW00172901000 Basler Application Note

tar.gz (applicable to all Linux distributions)

.deb (applicable to Ubuntu and related Linux distributions)
3. Install the downloaded installer package.

If you downloaded tar.gz:

a. Install the pylon SDK from the tar.gz installer package. Details about installation and
configuration are available from the included INSTALL and README files.

Make sure to carry out the necessary adjustments as described in the
INSTALL file:

Run the pylon-setup-env.sh script to set the PYLON_ROOT
environment variable.

If you want to use Basler USB3 Vision cameras, run the included
setup-usb.sh script.

If you downloaded .deb:

a. Install the pylon SDK for Linux on Debian and related Linux distributions (e.g., Ubuntu) from
the .deb installer package that suits your platform. To do so, open the dpkg command line
tool:

[+1 joy@support: ~ Q = - (m] X

:~$ sudo dpkg -i /home/joy/Downloads/pylon_6.3.0.2315
7-debo_amd64.deb i

b. Check the pylon root location environment variable and make sure it exists. If not, type the
following:

$ echo “export PYLON_ROOT=/opt/pylon” >> ~/.bashrc variable creation to the ~/.bashrc file.
joy@support: ~

echo SPYLON_ROOT
echo "export PYLON_ROOT=/opt/pylon" >> ~/.bashrc

source .bashrc
echo SPYLON_ROOT

/opt/pylon

N |

The pYLON_ROOT environment variable is necessary for pylon path identification related to
development and pylon-ros2-camera driver package use. See below for more information about
pylon-ros2-camera, designed for use with cameras supported by pylon.

2.3 Installing the ROS 2 Robot Operating System
The following installation steps are listed without detailed comment. For additional information, see
the ROS 2 Documentation.

Below, the installation of ROS 2 Galactic Geochelone is described. It is the currently released
version. For more details and possible alternative installation steps visit the Ubuntu ROS 2
Galactic Geochelone Installation site.

Interfacing Basler Cameras with ROS 2 4

http://docs.ros.org/en/rolling/Installation.html
http://wiki.ros.org/melodic/Installation/Ubuntu
http://wiki.ros.org/melodic/Installation/Ubuntu

AW00172901000

Basler Application Note

This application note may also apply to other ROS 2 releases, with installations
analogous to the installation of ROS 2 Galactic Geochelone. This, however, was

not tested.

To install ROS 2 Galactic Geochelone:

1.

2.
following commands:

$ apt-cache policy | grep universe

Joy@support: ~ Q

S apt-cache policy | grep universe
http://security.ubuntu.com/ubuntu focal-security/

release v=20.04,o0=Ubuntu,a=focal-security,n=focal,l=Ubuntu,c=

B http://security.ubuntu.com/ubuntu focal-security/

release v=20.64,0=Ubuntu,a=focal-security,n=focal,l=Ubuntu,c=

http://de.archive.ubuntu.comfubuntu focal-backports/
release v=20.04,o0=Ubuntu,a=focal-backports,n=focal,l=Ubunt
http://de.archive.ubuntu.com/ubuntu focal-backports/

release v=20.04,o0=Ubuntu,a=focal-backports,n=focal,l=Ubuntu,c=

http://de.archive.ubuntu.comfubuntu focal-updates/

release v=20.04,0=Ubuntu,a=focal-updates,n=Ffocal,l=Ubuntu,
http://de.archive.ubuntu.com/ubuntu focal-updates/

release v=20.04,o0=Ubuntu,a=focal-updates,n=focal, l=Ubuntu,
http://de.archive.ubuntu.com/ubuntu focal/
release v=20.04,o0=Ubuntu,a=focal,n=focal,l=Ubuntu,c=
http://de.archive.ubuntu.com/ubuntu focal/
release v=20.04,0=Ubuntu,a=focal,n=focal,l=Ubuntu,c=

1386 Packages

amd64 Packages

Prepare the installation with adding the ROS 2 apt repository to the system.
In the dpgk command line tool, check if the Ubuntu Universe repository is enabled by typing the

1386 Packages
,b=1386
amd64 Packages
,b=amd64
1386 Packages
u,c= ,b=1386
amd64 Packages
,b=amdé

1386 Packages

C= ,b=1386

amd64 Packages

C= ,b=amd64
,b=1386

,b=amd64

s ~9 I

$ sudo apt install software-properties-common

1 Joy@support: ~
:~§ sudo apt install software-properties-common
[sudo] password for joy:
Reading package lists...
Building dependency tree
Reading state information... Done
software-properties-common is already the newest version (8.99.9.8).
® upgraded, ® newly installed, @ to remove and 34 not upgraded.

:~$% sudo add-apt-repository universe
'universe' distribution component is already enabled for all sources.

- |

Done

$ sudo add-apt-repository universe

[+ joy@support: ~ Gl =

$ sudo add-apt-repository universe
'universe' distribution component is already enabled for all sources.

$

3. Add the ROS 2 apt repository to the system and sources list by typing the following commands:
$ sudo apt update && sudo apt install curl gnupg lsb-release

Interfacing Basler Cameras with ROS 2

AW00172901000 Basler Application Note

joy@support: ~ CHl B= =

$ sudo apt update &% sudo apt install curl gnupg lsb-release
://security.ubuntu.com/ubuntu focal-security InRelease [114 kB]

://de.archive.ubuntu.com/ubuntu focal InRelease
:f/de.archive.ubuntu.comfubuntu focal-updates InRelease [114 kB]
:f/de.archive.ubuntu.comf/ubuntu focal-backports InRelease [1088 kB]
://security.ubuntu.can/ubuo -securi ‘maln amdé4 Packages [

$ sudo curl -sSL https://raw.githubusercontent.com/ros/rosdistro/master/ros.key -o
/usr/share/keyrings/ros-archive-keyring.gpg

1 joy@support: ~ Q — = O *

$ sudo curl -sSL https://raw.githubusercontent.com/ros/rosdistro/mast
erfros.key -o fusr/sharefkeyrings/ros-archive-keyring.gpg

$

$ echo "deb [arch=$(dpkg --print-architecture) signed-by=/usr/share/keyrings/ros-archive-
keyring.gpg] http://packages.ros.org/ros2/ubuntu $(source /etc/os-release && echo
$UBUNTU_CODENAME) main" | sudo tee /etc/apt/sources.list.d/ros2.list > /dev/null

[+ joy@support: ~ Q = — o 4

$ echo "deb [arch=$(dpkg --print-architecture) signed-by=/usr/share/k
eyrings/ros-archive-keyring.gpg] http://packages.ros.org/ros2/ubuntu S(source fetc
fos-release && echo SUBUNTU_CODENAME) main" | sudo tee fetc/fapt/sources.list.d/ros
2.1list > fdev/null
= |

4. Install ROS 2 Galactic Geochelone by typing the following commands:
$ sudo apt-get update
joy@support: ~ Q =

$ sudo apt update
:f/security.ubuntu.com/ubuntu focal-security InRelease

://de.archive.ubuntu.comfubuntu focal InRelease

://de.archive.ubuntu.com/ubuntu focal-updates InRelease

:f/de.archive.ubuntu.com/ubuntu focal-backports InRelease
focal InRelease

Interfacing Basler Cameras with ROS 2 6

https://raw.githubusercontent.com/ros/rosdistro/master/ros.key%20-o%20/usr/share/keyrings/ros-archive-keyring.gpg
https://raw.githubusercontent.com/ros/rosdistro/master/ros.key%20-o%20/usr/share/keyrings/ros-archive-keyring.gpg

AW00172901000 Basler Application Note

$ sudo apt install ros-galactic-desktop

[+l joy@support: ~

:~S sudo apt install ros-galactic-desktop
Reading package lists... Done
Building dependency tree

Reading state information... Done

The following additional packages will be installed:
cmake cmake-data cppcheck cython3 default-libmysqlclient-dev docutils-common
freeglut3 gdal-data google-mock googletest graphviz hdf5-helpers
1965-va-driver ibverbs-providers ic
j iat-capmopn . 1i ' .

2.3.1 Environment Settings

2.3.1.1 In Preparation for Use Source the Setup Files of Environment Settings

ROS 2 relies on ‘Workspaces’ that are system locations where the developing takes place. Those
workspaces are combined for easier developing against different versions. It is accomplished by
sourcing setup files every time when opening a new shell. Without that sourcing, which makes
packages available, ROS 2 commands are not accessible from the actual shell. In other words, the
sourcing allows the shell to know where it has to look to execute ROS commands.

To source the setup files, type the following command:

$ source /opt/ros/galactic/setup.bash

2.3.1.2 Alternative Permanent Setup of Environment Settings

1. If the sourcing of the above setup files is not required every time a new shell is opened, add
the following command to the shell startup script:
$ echo “source /opt/ros/galactic/setup.bash” >> ~/.bashrc

joy@support: ~

:~$ echo "source Jfopt/ros/galactic/setup.bash” >> ~/.bashrc

N |

2. Inthe shell output, check the correct settings:

I joy@support: ~

:~S tail -1 .bashrc
source Jopt/ros/galactic/setup.bash

2~

3. Source the .bashrc file to apply the modification with $ source ~/.bashrc.

Interfacing Basler Cameras with ROS 2 7

AW00172901000 Basler Application Note

joy@support: ~

:~S$ source ~/.bashrc
:~$

4. Check whether the ROS environment variables were successfully set:

[+ joy@support: ~

:~S env | grep ROS
_VERSION=2
_PYTHON_VERSION=3
_LOCALHOST_ONLY=0
_DISTRO=galactic

i~

2.3.2 |Initializing rosdep

The rosdep init command, $ sudo rosdep init, will create a file of dependencies in
/etc/ros/rosdep/sources.list.d that hold some basic distro dependencies.

+1 joy@support: ~
:~S sudo rosdep init
Wrote /etc/ros/rosdep/sources.list.d/20-default.list
Recommended: please run
rosdep update

N |

The rosdep update, $ rosdep update, will read the distro file mappings and update the information
within ROS.

NOTICE

Running a rosdep Update with sudo will later result in permission errors.

Do not run a rosdep Update with sudo.

Interfacing Basler Cameras with ROS 2 8

AW00172901000 Basler Application Note

" joy@support: ~/pylon_ws Q =

: $ rosdep update
reading in sources list data from /etc/ros/rosdep/sources.list.d
Hit https://raw.githubusercontent.com/ros/rosdistro/master/rosdep/osx-homebrew.yam
1
Hit https://raw.githubusercontent.com/ros/rosdistro/master/rosdep/base.yaml
Hit https://raw.githubusercontent.com/ros/rosdistro/master/rosdep/python.yaml
Hit https://raw.githubusercontent.com/ros/rosdistro/master/rosdep/ruby.yaml
Hit https://raw.githubusercontent.com/ros/rosdistro/master/releases/fuerte.yaml
Query rosdistro index https://raw.githubusercontent.com/ros/rosdistro/master/index

end-of-life distro "ardent"
end-of-life distro "bouncy"
end-of-life distro "crystal”
end-of-life distro "dashing”
end-of-life distro "eloquent”
"foxy"
"galactic"
-life distro "groovy"
-life distro "hydro"
-life distro "indigo"
-life distro "jade"
-life distro "kinetic"
-life distro "lunar”
"melodic"
"noetic"
"rolling”
updated cache in /home/joy/.ros/rosdep/sources.cache

2.3.3 Installing the Build Tools

A universal tool that automates the process of building packages in their topological order and
handles the workflow of environment setup while building and afterwards is called ‘colcon’. It must
be installed before working with workspaces. It’'s an interaction of known build tools.

To install the build tool colcon:
1. Type $ sudo apt update.

joy@support: ~ Q =

S sudo apt update
://security.ubuntu.com/ubuntu focal-security InRelease

://de.archive.ubuntu.com/ubuntu focal InRelease

://de.archive.ubuntu.com/ubuntu focal-updates InRelease

://de.archive.ubuntu.com/ubuntu focal-backports InRelease
focal InRelease

2. Type $ sudo apt install python3-colcon-common-extensions

Interfacing Basler Cameras with ROS 2 9

AW00172901000 Basler Application Note

3] joy@support: ~ Q

:~% sudo apt install python3-colcon-common-extensions
Reading package lists... Done
Building dependency tree
Reading state information... Done
e fo lo;tng add1t10|.l

Setting up pvthona colcon common - extenc.wnu. (0.2
Processing trlgiers for man-db (2.9.1-1)

Alternative Installation

<sudo apt install python3-pip>

<pip install -U colcon-common-extensions>

2.3.4 Installing Tools

With the ROS 2 launch there are known issues that require the xterm terminal emulator installation
and usage so that the stdin user interaction is possible, i.e., with GDB.

To install the xterm terminal emulator:
1. Type $ sudo apt get update && sudo apt install xterm.

joy@support: ~ Q

S sudo apt update && sudo apt install xterm
:f/security.ubuntu.com/ubuntu focal-security InRelease
://de.archive.ubuntu.com/ubuntu focal InRelease
1 f/de. archwe ubuntu. com,-'ubuntu focal updateq Inneh.ase

Processiné trlggers for Ltbc bin (2.31- BubuntuQ 7)
Processing triggers for man-db (2.9.1-1) .
Processing trigiers for desktop-file-utils (©.24-1ubuntu3)

Interfacing Basler Cameras with ROS 2 10

AW00172901000 Basler Application Note

2.4 |Installing the Middleware

The descriptions given so far do not consider the intermediary (“driver”) between the powerful
pylon and ROS software structures. Such driver is usually created by the ROS-oriented developers
community.

The installation of a driver is illustrated here using the pylon-ros2-camera driver package as the
driver. In this document it is the pylon_ros2_camera driver of branch ‘galactic’. The installation
assumes that operating system and ROS 2 Robot Operating System have already been installed,
as described above.

2.4.1 Details About the pylon-ros2-camera driver package

The pylon-ros2-camera driver package is the currently official pylon ROS driver for all recent
Basler GigE Vision and USB3 Vision cameras. You can download the driver package using this
URL: https://github.com/basler/pylon-ros-camera/archive/refs/heads/galactic.zip.

The driver package provides a range of the pylon API features that allow interactive camera
operation. Images are published into ROS. The package is designed to meet certain application
tasks and is therefore not a complete wrapper for all pylon APl methods. However, adhering to the
open-source concept, the pylon-ros2-camera can be studied, copied or modified, observing the
related copyright and the BSD license model.

For further information about pylon-ros2-camera, go to its GitHub: GitHub - basler/pylon-ros-
camera at galactic.

2.4.2 Preparing a ROS 2 Build Workspace

First off ROS 2 was installed. Then the colcon tools were added. That is a workspace build system
and provides low level build system macros and infrastructure. The colcon system is necessary to
build code projects like pylon-ros2-camera, for example.

24.21 Creating a Working Directory

A workspace must be set up where single or multiple packages can be built. While the directory
name can be chosen freely, it is advisable to link it to the purpose of the workspace, i.e.
pylon_ws.

In the following, the folder pylon_ws and its subfolder src are created, unless they are already
present.

To create folders:
1. Type $ mkdir -p ~/pylon_ws/src and $ cd ~/pylon_ws/src.

Jjoy@support: ~/pylon_ws/src

:~S mkdir -p ~/pylon_ws/src
:~$ cd ~/pylon_ws/src/
: $

Interfacing Basler Cameras with ROS 2 11

https://github.com/basler/pylon-ros-camera/archive/refs/heads/galactic.zip
https://github.com/basler/pylon-ros-camera/tree/galactic
https://github.com/basler/pylon-ros-camera/tree/galactic

AW00172901000 Basler Application Note

Later on in the process, the ROS 2 packages are cloned into the src folder for building. Creating a
new directory for any new workspace is a good practice as well as placing packages within a src
subdirectory.

2.4.3 The Driver Employment

1. Clone the necessary driver packages from GitHub to the related colcon build system
workspace src folder: $ cd ~/pylon_ws/src/ && git clone -b galactic
https://github.com/basler/pylon-ros-camera pylon_ros2_camera

I+ joy@support: ~/pylon_ws/src Q — - o x

H $ cd ~/pylon_ws/src/ && git clone -b galactic http://git
hub. cum/baaler/pylon ros-camera pylon_ros2_camera
Cloning into 'pylon_ros2_camera'.

warning: redirecting to https:ffgithub.cum;baslerfpylnn-ras-cameraf

remote: Enumerating objects: 6301, done.
remote: Counting objects: 100% (319/319), done.
remote: Compressing objects: 100% (189/189), done.
remote: Total 6381 (delta 151), reused 230 (delta 182), pack-reused 5982
Receiving objects: 100% (6301/6381), 1.62 MiB | 3.39 MiB/s, done.
Resolving deltas: 1ee% (3862/3862), done.

: S

Due to a recent issue with ROS CameraPublisher::getNumSubscribers it’'s not possible to count
the correct number of subscribers to the image_raw and image_rect topics. For a fix it is required
to clone the image_common package as well. It will be compiled with the
pylon_ros2_camera_node.

2. Clone the necessary additional package from GitHub to the related colcon build system
workspace src/pylon_ros2_camera folder:
$ cd ~/pylon_ws/src/pylon_ros2_camera &% git clone -b galactic https://github.com/ros-
perception/image.common.git pylon_ros2_camera

[+1 joy@support: ~/pylon_ws/src/pylon_ros2_camera Q = - u} X

- $ c¢d ~/pylon_ws/src/pylon_ros2_camera && git clone https
://github. com/ros perceptlonflmage common.git -b galacttc

Cloning into 'image_common'

remote: Enumerating objects: 3931, done.

remote: Counting objects: 100% (381/381), done.

remote: Compressing objects: 100% (231/231), done.

remote: Total 3931 (delta 225), reused 224 (delta 133), pack-reused 3550
Receiving objects: 100% (3931/3931), 914.49 KiB | 5.35 MiB/s, done.
Resolving deltas: 100% (2383/2383), done.

$

3. Install mandatory dependencies by typing $ cd ~/pylon_ws && sudo rosdep install --from-
paths src --ignore-src -r -y.

Interfacing Basler Cameras with ROS 2 12

http://wiki.ros.org/catkin
http://wiki.ros.org/catkin

AW00172901000 Basler Application Note

+1 Jjoy@support: ~/pylon_ws Q = = 0 *x

$ cd ~/pylon_ws && rosdep install --from-paths src --ignore-
src -r -y
executing command [sudo -H apt-get install -y ros-galactic-diagnostic-updater]
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following NEW packages will be installed:
ros-galactic-diagnostic-updater
® upgraded, 1 newly installed, @ to remove and 46 not upgraded.
Need to get 91,7 kB of archives.
After this operation, 468 kB of additional disk space will be used.
Get:1 http://repo.rosZ.org/ubuntu/main focal/main amd64 ros-galactic-diagnostic-up
dater amd64 2.1.3-1focal.20220211.0650257 [91,7 kB]
Fetched 21,7 kB in 1s (125 kB/s)
Selecting previously unselected package ros-galactic-diagnostic-updater.
(Reading database ... 244672 files and directories currently installed.)
Preparing to unpack ...fros-galactic-diagnostic-updater_2.1.3-1focal.20220211.0502
57 _amd64.deb ...
Unpacking ros-galactic-diagnostic-updater (2.1.3-1focal.20220211.050257)
Setting up ros-galactic-diagnostic-updater (2.1.3-1focal.26226211.050257)
#All required rosdeps installed successfully

s |

4. Change to the workspace folder.
5. Build pylon_ros2_camera using colcon build by typing $ cd ~/pylon_ws && colcon build.

[+ joy@support: ~/pylon_ws Q

S cd ~/pylon_ws && colcon build
[1.8125] HARNING colcon.colcon _core.verb:Some selected packages are already built I
in one or more underlay workspaces:

'image_transport' is in: Jopt/ros/galactic
If a package in a merged underlay workspace is overridden and it installs headers,
then all packages in the_overl must sort their include, directories by workspace

Finished <<< pylon_ros2_camera_component [38.9s]
Starting =>> pylon_ros2_camera_wrapper
Finished <<< pylon ros2 camera wrapper [9.83s]

summary: 7 packages finished [1min 35s5]
1 package had stderr oitput: pylon_ros2 camera_component
- 5

Since packages are built in type RELEASE it has to be used an argument to build
them in type DEBUG, i.e. colcon build --symlink-install --cmake-args=-
DCMAKE_BUILD_TYPE=Debug

Interfacing Basler Cameras with ROS 2 13

AW00172901000 Basler Application Note

2.4.31 In Preparation for Use Source the Setup Files of Workspace Settings

When you open a new shell, it searches for commands only in certain areas of the entire file
system. In other words, when you type a command, it will search in some predefined areas to find
out if it is an actual command.

Now, if required to add new commands to your shell, it has to know where to find them. This is
basically the workspace setup.bash file telling, where to find all the ROS executables (including
the ones compiled).

To add new commands to your shell (if required):

1. Type $ source ~/pylon_ws/install /setup.bash

2.4.3.2 Alternative Permanent Setup of Environment Settings

If the sourcing of setup files is not required every time a new shell is opened, add the following
command to the shell startup script: $ echo “source ~/pylon_ws/install/setup.bash” >> ~/.bashrc.

joy@support: ~/pylon_ws Q = = m|

S icho "source ~/pylon_ws/install/setup.bash” >> ~/.bashrc
$

1. In the shell output, check the correct settings:

[+1 joy@support: ~/pylon_ws

- $ tail -1 ~/.bashrc
source ~/pylon_ws/install/setup.bash

2. Source the .bashrec file to apply the modification with $ source ~/.bashrc.

joy@support: ~/pylon_ws

S source ~/.bashrc

oy |

2.4.4 Running the Driver Package

To run the driver package:

1. Type $ ros2 launch pylon_ros2_camera_wrapper pylon_ros2_camera.launch.py
This automatically uses the first camera model that is found by underlaying pylon API.
If no camera can be found, it will create an error.

If the built installation is launched, $ ros2 launch pylon ros2_camera_wrapper
pylon_ros2_camera.launch.py, with defaults, it will automatically use the first camera model that is
found by underlaying pylon API. If no camera can be found it will create an error.

Interfacing Basler Cameras with ROS 2 14

AW00172901000 Basler Application Note

1 joy@support: ~/pylon_ws

$ ros2 launch pylon ros2 camera wrapper pylon _ros2 camera.la

unch.py

[INFO] [launch]: A1l log files can be found below /home/joy/.ros/log/2022-04-12-19
-56-08-810516-support-134508

[INFO] [launch]: Default logging verbosity is set to INFO

[INFO] [pylon_ros2_camera_wrapper- 1] process started wlth pi

[pylon ros2_camera_wrapper- 1]
‘ yarameter] [WARN] Autofla '
[pylon rosz camera_wrapper- 1] 1049780170 445856582 [basler pylon.ros2.pylon_ros2_c
amera_parameter] [INFO] No Device User ID set -> Will open the camera device found
first
[pylon_ros? _camera wrapper-1]

If a camera is found it looks as in the following screenshot.
The node is operating with the camera and provides received images via the topic channel.
It can be exited with Ctrl-C.

[+ joy@support: ~/pylon_ws

$ ros2 launch pylon_ros2_camera_wrapper pylon_ros2_camera.la
unch.py
[INFO] [launch]: All log files can be found below /home/joy/.ros/log/2022-04-12-20
-02-37-838279-support-134768
[INFO] [launch]: Default logging verbosity is set to INFO
[INFO] [pylon_ros2 camera_wrapper- 1] process started with pid [134770]
[pylon ros2_camera wrapper 1] 16 5558 B7 sler.pylon.ros2.py’

e = 10000 gain = 0, gamma = 1, shutter mode = default shutter _mode
AC[NARNING] [launch]:| user interrupted with ctrl-c (SIGINT)
[pylon_ros2_camera_wrapper-1] 1649786629.809212953 [rclcpp] [INFO] signal_handler(
signal_value=2)
[pylon_ros2_camera_wrapper-1] Not all nodes were finished before finishing the con
text
[pylon_ros2_camera_wrapper-1] .Ensure ‘rcl_node fini’ is called for all nodes befo
re ‘rcl_context fini ,to avoid leaking.
[pylon_ros2_camera_wrapper-1] terminate called without an active exception
[ERROR] [pylon_ros2 camera_wrapper-1]: process has died [pid 134770, exit code -6,

cmd ' fhome/joy/pylon_ws/install/pylon_ros2 camera_wrapper/lib/pylon_ros2_camera_w
rapper/pylon_ros2_camera_wrapper --ros-args -r __node:=pylon_ros2_camera_node -r _
_ns:=/my camera --params-file /home/joy/pylon_ws/install/pylon_ros2_camera_wrapper
/share/pylon_ros2_camera_wrapper/config/default.yaml --params-file /tmp/launch_par
ams_uzw2zp4r'].

: A |

To merely view the images you can use the ROS 2 compatible version of the image_view node of
the image_pipeline node stack. This node subscribes to the provided raw image topics. However,
because of the more extended functionalities of image display and manipulation (see below)
Basler recommends to start with the GUI -based rqt framework.

Interfacing Basler Cameras with ROS 2 15

AW00172901000 Basler Application Note

To open the rqt framework:

1. Open a third terminal and execute the $ rqt command line.

joy@support: ~

The framework GUI opens.

2. If not yet done, open the Plugins -> Visualization menu and select Image View. This enables
permanent image display.

An image viewer control opens where the camera’s live images can be seen, zoomed, and saved.

3. Apply the /my_camera/pylon_ros2_camera_node/image_raw topic as described in the screenshot

below.
Default - rqt - 0O &
File Plugins Running Perspectives Help
Eimage View DE® -o0X
|f/my_camera]pylon_rosz_camera_node. '| = : 0 :‘ 10,00m j: 2
ige_raw_mouse_left‘ smooth scaling 0°

|

|\ m = "~
il & =\ J -
= v —— — Y =] = E
EAD z
| =\ TN/
I—
Sl _
1=
|
B .

o R iy

-
|

The camera interfacing is complete.

Interfacing Basler Cameras with ROS 2 16

AW00172901000 Basler Application Note

3 Controlling the Camera

To control the cameras by setting camera parameters, so-called services are used. Contrary to
single message topics that are provided after subscription, the services are able to handle request
reply communication. Therefore, a pair of messages defines them. Services only provide data
when they are specifically called. The service abilities of the pylon_ros2_camera node can be
seen by issuing ROS commands like ros2 service list, ros2 service type <service>, and ros2
interface show <interface>. See following samples of parameter settings.

To seel/display the service abilities:

1. You have the following possibilities:
Type one of the following commands:

ros2 service list
ros2 service type <service>
ros2 interface show <interface>
See the following samples of parameter settings.

$ ros2 service list

nl joy@support: ~ Q =

:~S ros2 service list
/my_camera/pylon_ros2_camera_node/activate_autoflash_output_o
/my_camera/pylon_ros2_camera_node/activate_autoflash_output_1
/my_camera/pylon_ros2_camera_node/activate_autoflash_output_2
/my_camera/pylon_ros2_camera_node/describe_parameters
/my_camera/pylon_ros2_camera_node/execute_software_trigger
/my_camera/pylon_ros2_camera_node/get_chunk_counter_value
/my_camera/pylon_ros2_camera_node/get_chunk_enable
/my_camera/pylon_ros2_camera_node/get_chunk_exposure_time
/my_camera/pylon_ros2_camera_node/get_chunk_frame_counter
/my_camera/pylon_ros2_camera_node/get_chunk_line_status_all
/my_camera/pylon_ros2_camera_node/get_chunk_mode_active
/my_camera/pylon_ros2_camera_node/get_chunk_selector
/my_camera/pylon_ros2_camera_node/get_chunk_timestamp
/my_camera/pylon_ros2_camera_node/get_max_num_buffer
/my_camera/pylon_ros2_camera_node/get_parameter_types
/my_camera/pylon_ros2_camera_node/get_parameters
/my_camera/pylon_ros2_camera_node/get_statistic_buffer_underrun_count
/my_camera/pylon_ros2_camera_node/get_statistic_failed_buffer_count
/my_camera/pylon_ros2_camera_node/get_statistic_failed_packet_count
/my_camera/pylon_ros2_camera_node/get_statistic_missed_frame_count
/my_camera/pylon_ros2_camera_node/get_statistic_resend_request_count
/my_camera/pylon_ros2_camera_node/get_statistic_resynchronization_count
/my_camera/pylon_ros2_camera_node/get_statistic_total_buffer_count

For example, the exposure time type can be:

$ ros2 service type /my_camera/pylon_ros2_camera_node/set_exposure

Interfacing Basler Cameras with ROS 2 17

AW00172901000 Basler Application Note

1 joy@support: ~

S ros2 service type /my camera/pylon_ros2_camera_node/set_exposure
pylon_ros2_camera_interfaces/srv/SetExposure

$

$ ros2 interface show pylon_ros2_camera_interfaces/srv/SetExposure
[+1 joy@support: ~

$ ros2 interface show pylon ros2 camera_interfaces/srv/SetExposure
The target exposure time measured in microseconds.
If the limits were exceeded, the desired exposure time will be truncated.
float32 target_exposure
Exact match can not always be reached
float32 reached exposure
bool success

Y |

To find a service, the instructions ros2 service list and ros2 service type can be combined in
ros2 service list —t with grep filter function. The execution is realized by ros2 service call
<service> <interface> “<argument(s)>".

$ ros2 service call /my_camera/pylon_ros2_camera_node/set_exposure
pylon_ros2_camera_interfaces/srv/SetExposure “target_exposure: 6666

[+1 joy@support: ~ Q =

$ ros2 service list -t | grep exposure
/my camera/pylon_ros2 camera_node/get chunk_ _time [pylon_ros2 camera_inter
faces/srv/GetFloatValue]
/my camera/pylon_ros2 camera_node/set chunk _time [pylon_ros2 camera_inter
faces/srv/SetFloatValue]
/my _camera/pylon_ros2_camera_node/set [pylon_ros2 camera_interfaces/srv/S
etExposure]

S ros2 interface show pylon_ros2_camera_interfaces/srv/SetExposure
The target exposure time measured in microseconds.
If the limits were exceeded, the desired exposure time will be truncated.
float32 target_exposure
Exact match can not always be reached
float32 reached_exposure
bool success

s

Interfacing Basler Cameras with ROS 2 18

AW00172901000 Basler Application Note

[+1 joy@support: ~

:~$ ros2 service call /my camera/pylon_ros2_ camera_node/set_exposure py
lon_ros2 _camera_interfaces/srv/SetExposure "target_exposure: 6666"
requester: making request: pylon_ros2 camera_interfaces.srv.SetExposure Request(ta
rget_exposure=6666.0)

response:
pylon_ros2_camera_interfaces.srv.SetExposure_Response(reached_exposure=6666.0, suc
cess=True)

N |

Some specific service calls concern, e.g., the definition of a ROI setup and the selection of a pixel
format. See the related sample code:

M~ joy@support: ~ Q =

:~S ros2 service list -t | grep roi
/my_camera/pylon_ros2_camera_node/set_ [pylon_ros2_camera_interfaces/srv/SetROI
1

:~$ ros2 interface show pylon_ros2_camera_interfaces/srv/SetROI

Select a region of interest to get a cropped image.
The region is defined by four parameters
roi.width: with of the region
roi.height: height of the region
rol.x_offset at which pixel a long the x axis (horizontal) does the
cropped region start
roi.y offset at which pixel a long the y axis (vertical) does the
cropped region start
The cropped image will then be Image[y offset:y offset+vertical, x_offset:x offs
et+horizontal]
Notice that x_offset cannot be larger than img.width - roi.width
The same for y _offset, not larger than img.height - roi.height
sensor_msgs/RegionOfInterest target_roi

#

uint32 x_offset

#
=
#
#
=
#
=
#

+=

(0 1f the ROI includes the left edge of the image)
uint32 y offset

(0 if the ROI includes the top edge of the image)
uint32 height
uint32 width
bool do_rectify

Exact match can not always reached
sensor_msgs/RegionOfInterest reached_roi
#
uint32 x_offset
(0 if the ROI includes the left edge of the image)
uint32 y offset
(6 if the ROI includes the top edge of the image)
uint32 height
uint32 width
bool do_rectify
bool success

-5 1

Interfacing Basler Cameras with ROS 2

AW00172901000 Basler Application Note

[+ joy@support: ~

:~$ ros2 service call /my_camera/pylon_ros2_camera_node/set _roi pylon_r
0s2_camera_interfaces/srv/SetROI "target_roi: {x_offset: 0,y offset: ©,height: 480
,width: 640,do_rectify: false}"
requester: making request: pylon_ros2 camera_interfaces.srv.SetROI_Request(target_
roi=sensor_msgs.msg.RegionOfInterest(x_offset=0, y offset=0, height=480, width=640
, do_rectify=False))

response:
pylon_ros2_camera_interfaces.srv.SetROI_Response(reached_roi=sensor_msgs.msg.Regio
nOfInterest(x_offset=0, y offset=0, height=480, width=640, do_rectify=False), succ
ess=True)

N

1 joy@support: ~ Q =

:~$ ros2 service list -t | grep encoding
/my_camera/pylon_ros2_camera_node/set_image_ [pylon_ros2_camera_interfaces
[/srv/SetStringValue]

:~$ ros2 interface show pylon_ros2_camera_interfaces/srv/SetStringValue
Used by :

- set_Image_Encoding ROS service. (value = mono8, monol6, bgr8, rgb8, bayer_bggr
8, bayer _gbrg8, bayer_rggb8, bayer grbg8, bayer_rggbl6, bayer bggr16, bayer_gbrgié
, bayer_grbgis).

string value # value to be setted
bool success # indicate successful run of triggered service
string message # informational, e.g., for error messages

=Y

[+ joy@support: ~

:~5 ros2 service call my _camera/pylon_ros2 camera_node/set image encodi
ng pylon_ros2_camera_interfaces/srv/SetStringValue "value: mono8"
requester: making request: pylon_ros2_camera_interfaces.srv.SetStringValue_Request
(value="mono8"')

response:
pylon_ros2_camera_interfaces.srv.SetStringValue_Response(success=True, message='do
ne')

s 1

4 Driver Adjustment

ROS packages are open-source projects. The ROS 2 driver package, presented in this document
serves as an example. You can, however, program your own ROS driver package according to
your needs.

Interfacing Basler Cameras with ROS 2 20

AW00172901000

Basler Application Note

To get informed about latest developments of the pylon-ros2-camera driver package, access the
issue tracker on the GitHub for pylon-ROS2-camera.

Revision History

Document Number

Date

Changes

AW00172901000

15 May 2022

Initial release version of this document.

Interfacing Basler Cameras with ROS 2

21

https://github.com/basler/pylon-ros-camera

	1 General Information
	2 Installation
	2.1 Operating System Compatibilities
	2.2 Installing the Basler pylon Camera Software Suite for Linux x86_64
	2.3 Installing the ROS 2 Robot Operating System
	2.3.1 Environment Settings
	2.3.1.1 In Preparation for Use Source the Setup Files of Environment Settings
	2.3.1.2 Alternative Permanent Setup of Environment Settings

	2.3.2 Initializing rosdep
	2.3.3 Installing the Build Tools
	2.3.4 Installing Tools

	2.4 Installing the Middleware
	2.4.1 Details About the pylon-ros2-camera driver package
	2.4.2 Preparing a ROS 2 Build Workspace
	2.4.2.1 Creating a Working Directory

	2.4.3 The Driver Employment
	2.4.3.1 In Preparation for Use Source the Setup Files of Workspace Settings
	2.4.3.2 Alternative Permanent Setup of Environment Settings

	2.4.4 Running the Driver Package

	3 Controlling the Camera
	4 Driver Adjustment

